NESUG 2010 Coders' Corner

Normalizing SAS® Datasets Using User Define Formats
David D. Chapman, US Census Bureau, Washington, DC

ABSTRACT

Normalization is a database concept used to eliminate redundant data, increase computational efficiency and minimize
data storage space. This paper discusses the normalization of data and how to do it with user defined formats and
SAS datasets. Normalization and its characteristics are reviewed together with the basics of creating user defined
formats. Examples are given that show applying user define formats to achieve the results associated with normalizing
data.

INTRODUCTION

How you structure your data has implications for efficient storage and processing. This is true whether your data is
a SAS dataset or a database. Normalization is a concept that applies to data in general and not just to database
systems. The techniques used in database systems can be used with SAS datasets; but, user defined formats unique
to SAS can also be used to achieve the same end.

THE PROBLEM

Many — perhaps most — large datasets contain extensive duplication. This duplication is caused by records having
common characteristics. Duplicationincreases storage space, CPU usage, the amount of input-output, and the overall
run time. The United States has an estimated 309 million people living in 3,077 counties. This is approximately
100,000 people in each county. If we had a dataset with one record per person, a total of 100,000 records would have
the same state, county, geographic division, and region (e.g. Baltimore City, Maryland, South Atlantic Division, North
East Region, United States). This example shows duplication related to both geography and a hierarchal classification.
There are many other hierarchal classifications used in datasets. An important characteristic of a hierarchical
classification is that it is a mutually exclusive set of codes that covers an entire universe or domain-of-study and that
can be used to assign any record to a set of progressively larger groups (zip code —>county-->state—>geographic
division—>geographic region—>US).

There many other common sources of duplication. Duplication often originates in single value resulting in a constant
set of associated values such an a hierarchy or standard set of variable values. For example a business ID always
being associate with a standard mail, phone, and electronic address, name, geographic location (latitude and
longitude) or business characteristics (legal form of organization, type of business, contact name or other
characteristic) .

A SOLUTION - NORMALIZATION

“Normalization” is a systematic way of making a database suitable for general-purpose querying and free of
undesirable characteristics. The concept was introduce by E. F. Codd in the 1970's. There are six different levels of
normalization; but, usually a database is considered normalized if it adheres to the first three (INF, 2NF, and 3NF).
The process of “Normalization” strives to eliminate redundant data and ensure data dependencies make sense. A
database(or set of datasets) is in normal form if all tables in the database are in normal form.

First Normal Form(1NF)

The database is in a regular organization that includes (1) no duplicate columns, (2) every row with a unique set of
columns (primary key), and (3) separate tables for each set of related data.

SECOND NORMAL FORM(2NF)

A database is 2NF meets all the requirements of 1NF. The database does not contain subsets of data that apply to
multiple rows (they are placed in separate tables). Relationships exist between the original table and new tables
through foreign keys.

THIRD NORMAL FORM(3NF)

A database meets all the requirements of 2NF. The database does not contain columns that are not dependent on
the primary key.

NESUG 2010 Coders' Corner

EXAMPLE OF UN-NORMALIZATION DATA

The data in figure 1 is an example of “Un-Normalization” data.

Figure 1: De-Normalized Data
ID | NAME | BIRTH | AGE HOME ADDRESS EDUCATION
YEAR STREET cITY STATE | zIP | COLLEGE | LOCATION
1 ADAM 2001 21 123 MAIN BALTIMORE MD 12345 NCSU NC
2 BILL 1976 34 223 MAIN BALTIMORE MD 12345 UVA VA
3 MARY 1976 34 323 MAIN BALTIMORE MD 12345 NC SU NC
4 BOB 1992 18 423 MAIN BALTIMORE MD 12345 UVA VA
5 ALICE 1990 20 523 MAIN BALTIMORE MD 12345 NC SU NC
6 ADAM 1978 32 623 MAIN BALTIMORE MD 12345 UVA uva
7 ADF 1987 23 528 A STREET Wash;ington dc 34567 | NC SU NC
8 SALLY 1989 21 528 B STREET Wash;ington dc 34567 UVA VA
9 BARRY 1988 22 528 C STREET Wash;ington dc 34567 NC SU NC
10 DAVID 1985 25 528 D STREET Wash;ington DC 34567 UVA VA
11 HINADI 1993 17 528 E STREET Wash;ington DC 34567 NCSU NC
12 SELVA 1992 22 528 F STREET Wash;ington DC 34567 UVA VA

The data in figure 1 represents un-normalized data. This lack of normalization is illustrated by:

1. There are two sets of repeated groups
a. The zip code, state and city repeat for first and second group of six records
b. The college and location repeat when sorted by location

There is a data dependency between birth year and age

There is a primary key in the ID number.

4, The are two foreign keys
a. Zip code can be a foreign key for repeating group based on zip, state, and county
b. College can be the foreign key for the repeating group based on college.
C. Birth year can be a foreign key for the dependency age

EXAMPLE OF NORMALIZATION DATA

The data in figure 1 can be “Normalizaed” in the following way by creating one primary table and three child tables.
There are often a number of different ways for normalizing a set of data. The normalized data consist of the four tables
below and their indexes.

PARENT TABLE

The data in figure 2 is an example of the “Normalization” data. The parent table has the same number of rows as the
parent table; but, it has four fewer variables. The parent table has four Indexes. The primary index based on ID and
three foreign keys or indexes are based on year born, zip, and college.

NESUG 2010 Coders' Corner

Figure 2: Un-Normalized Data “NAME”

ID NAME BIRTH | HOME ADDRESS EDUCATION
YEAR
STREET zip College
1 ADAM 2001 123 MAIN 12345 NCSU
2 BILL 1976 223 MAIN 12345 UVA
3 MARY 1976 323 MAIN 12345 NC SU
4 BOB 1992 423 MAIN 12345 UVA
5 ALICE 1990 523 MAIN 12345 NC SU
6 JIM 1978 623 MAIN 12345 UVA
7 ADF 1987 528 A STREET 34567 NC SU

8 SALLY 1989 528 B STREET 34567 UVA

9 BARRY 1988 528 C STREET 34567 NC SU

10 DAVID 1985 528 D STREET 34567 UVA

11 HINADI 1993 528 E STREET 34567 NCSU

12 SELVA 1992 528 F STREET 34567 UVA

CHILD TABLE FOR REPEATING GEOGRAPHIC GROUP

The child table removing the redundant information due to the relationship of zip code and state and county is given
below. The child table zip table would have an index based on zip variable and have zip as the foreign key in the
parent table.

Figure 3: ZIP Child Table

COUNTY state zip
BALTIMORE MD 12345
Wash;ington DC 34567

ZIP is primary key

Child Table for Repeating college Group

The child table removing the redundant information due to the relationship of college and location is given below. It
has an index based on college variable and have college as the foreign year in the parent table.

Table 4: College Child Table

College | location

NCSU NC

uva Va.

College is the primary key

CHILD TABLE FOR AGE AND BIRTH DATE DEPENDENCY

The age and birth year data dependency can be handled several ways. Two alternatives are to use either a child table
with a foreign key or a function. The dependency exists because age is the difference between the current date and

NESUG 2010 Coders' Corner

the current year. In 2010 Adam will be age 21 (2010 - 1989 = 21). The alternative to using a function is to use the
AGE child table given below. The table has an index based on birth year that would have birth year as the foreign key
in the parent table.

Figure 5: BIRTH YEAR CHILD TABLE

AGE BIRTH [AGE BIRTH AGE BIRTH AGE BIRTH

YEAR YEAR YEAR YEAR
18 1992 18 1982 28 1972 38 1962
19 1991 19 1981 29 1971 39 1961
20 1990 30 1980 30 1970 40 1960
21 1989 21 1979 31 1969 41 1959
22 1988 22 1978 32 1968 42 1958
23 1987 23 1977 33 1967 43 1957
24 1986 24 1976 34 1966 44 1956
25 1985 25 1975 35 1965 45 1955
26 1984 26 1974 36 1964 46 1954
27 1983 27 1973 37 1963 a7 1953

USING NORMALIZED DATA WITH THE DATA IN THE DATA STEP

Normalize data can be used in many ways. In databases and often in SAS, SQL is used. In SAS, the alternative to
SQL, is the Data Step. In this paper, the dataset will be used to “de-normalize” data. The “Merge” feature of the data
step can be use to reconstruct the data from the normalized information. The “normalized” data consists of the
following data datasets and indexes.

Figure 6: Relationship of Normalize Tables

Table Index

Name Type

NAME (Parent) ID PRIMARY KEY

BIRTH YEAR FOREIGN KEY

ZIP FOREIGN KEY

COLLEGE FOREIGN KEY

ZIP (Child) ZIP PRIMARY KEY
COLLEGE (Child) COLLEGE PRIMARY KEY
BIRTH YEAR (Child) BIRTH YEAR FOREIGN KEY

The SAS code to “de-normalize” the data is given below.

PROC DATASETS LIBRARY =WORK ;
select PARENT ;
index create college;
quit;

NESUG 2010 Coders' Corner

DATA NAME_ZIP;

MERGE
PRIMARY
ZIP;

BY ZIP;

RUN;

PROC DATASETS LIBRARY=WORK;
MODIFY COLLEGE;

INDEX COLLEGE;
QUIT;

DATA NAME_ZIP_COLLEGE;
MERGE
NAME_ZIP
COLLEGE;
BY COLLEGE;
RUN;

PROC DATASETS LIBRARY=WORK;
MODIFY COLLEGE;

INDEX COLLEGE;

QUIT;

PROC DATASETS LIBRARY=WORK;
MODIFY BIRTH_YEAR ;

INDEX BIRTH_YEAR :

QUIT;

DATA NAME_DE_NORMALIZED;
MERGE

NAME_ZIP_COLLEGE

BIRTH_YEAR,;

BY BIRTH_YEAR ;
RUN;

PROC DATASETS LIBRARY=WORK;
MODIFY NAME_DE_NORMALIZED:
INDEX ID ;

QUIT;

The final SAS dataset, "'NAME_DE_NORMALIZED", contains all the information in the table in Figure 1.

Creating User Defined Formats Based on the Foreign / Child Tables

The information in the child tables can also be created as used define formats. In our example there are three child
tables: BIRTH YEAR, COLLEGE, and ZIP. These can be represented and created as three user defined formats.
These is no need to create an index because the functionality of an index is included with the user defined format.

CREATING THE USER DEFINED FORMATS

User defined format set up a one-to-one relationship between the original value and reference value. In the format
$COLLEGE below the original value is college and the reference value is location. The format $COLLEGE contains
exactly the same information as the child table COLLEGE table above.

PROC FORMAT ;
VALUE $COLLEGE ;
‘NCSU’="NC’
‘UVA ‘="VA’;

NESUG 2010 Coders' Corner

RUN;

PROC FORMAT ;
VALUE BYEAR;
1981=17
1982=18

RUN,;

Formats can reference single values such as with the format COLLEGE or multiple values such as the format $ZIP
below. When formats reference multiple values, the need to be broken apart before they can be used in an application.

PROC FORMAT ;
VALUE $ZIP;
‘12345’="MDBALTIMORE "’
‘67890‘="DCWASHINGTON ’;
RUN;

The three formats above allow us to retrieve data associated with the reference values.

Using the USER DEFINE FORMATS

Creating the user defined formats is equivalent to creating the child tables associated with a normalized set of data.
These formats are utilized with a SAS PUT function. The PUT function uses the user defined format and a starting
value to retrieve the stored data. The PUT function does both the Look-Up and the Merge at the same time. The code
for our example is given below.

LOCATION =PUT (COLLEGE, $COLLEGE.);
AGE =PUT (BIRTH_YEAR, AGE.);

For formats that contain two or more pieceS of information such as ZIP. The information is retrieved and then parsed.
For the ZIP information.

STATE_COUNTY = PUT(ZIP, $ZIP.)
STATE = SUBSTR (STATE_COUNTY, 1, 2);
COUNTY = SUBSTR (STATE_COUNTY, 3, 12)

The complete code to create the “de-normalized” SAS dataset is given below.

DATA NAME_ZIP_COLLEGE ;

SET NAME;

LOCATION = PUT(COLLEDGE, $COLLEGE.) ;

STATE_COUNTY =PUT(ZIP, $ZIP.)

STATE = SUBSTR (STATE_COUNTY, 1, 2);

COUNTY = SUBSTR(STATE_COUNTY, 3, 12)
RUN;

This proves the old adage that there is more than one way to skin a cat.

NESUG 2010 Coders' Corner

CONCLUSIONS

Normalization is a method to increase efficiency by reducing storage space and cpu resources. It is usually thought
of as a technique used primarily in databases. User define formats can be used to apply the same principals with SAS
datasets.

REFERENCES

Carpenter, Arthur L. (2004) “Building and Using User Defined Formats”, SUGI 29 Proceedings ,Montreal, Canada,
2004.

Proc Format, Base SAS 9.2 Procedures, SAS Press, Cary, North Carolaina

Kent, William (1983) “A Simple Guide to Five Normal Forms in Relational Database Theory”, Communications of
the ACM 26(2), Febrary, 1983, 120-125.

“Database normalization”, Wikipedia, the free encycopedia 8 August, 2010
(http://en.wikipedia.org/wiki/datgabase normalization)

Chapple, Mike. “Database Normalization Basics”, About.com Guide August 22, 2010.
(http://databases.about.comn/od/specificproducts/a/normalization.htm)

DISCLAIMER

This paper reports the results of research and analysis undertaken by Census Bureau staff. It has undergone a more
limited review by the Census Bureau than its publications. This report is released to inform interested parties and to
encourage discussion.

ACKNOWLEDGMENTS

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are registered
trademarks or trademarks of their respective companies.

CONTACT INFORMATION

Please let me know your comments. You can contact me at:

Author: David D. Chapman

COMPANY: Quality Assurance Staff
Economic Planning and Coordination Division
US Census Bureau
Washington, DC 20233

WORK PHONE 301-763-6535

EmMAIL david.d.chapman@census.gov

khkhkkhkhkhhhhkhhddhdhdhhddhdhdhddhddhddhddhddddhdxdddhxdxdhhx*x

